__Preprints__

- E. Latos and T. Suzuki, “On the Poisson–Nernst–Planck model".
- E. Latos, “Nonlocal reaction preventing blow-up in the supercritical case of chemotaxis”, arXiv.
- N. Kavallaris, E. Latos and T. Suzuki,, “Diffusion-driven blow-up for a non-local Fisher-KPP type model”, arXiv.

__Published__- E. Latos and T. Suzuki, “Quasilinear reaction diffusion systems with mass dissipation”, AIMS, Mathematics in Engineering, Special issue:"Advances in the analysis of chemotaxis systems" (2022), 4(5) 1-13.
- E. Latos and T. Suzuki, “Mass conservative reaction diffusion systems describing cell polarity”, Math Meth Appl Sci., (2021), 1-15.
- Li Chen, Laurent Desvillettes, and E. Latos, “On a Class of Reaction-Diffusion Equations with Aggregation”, Advanced Nonlinear Studies, De Gruyter, vol. 21, no. 1, 2021, 119-133.
- K. Fellner E. Latos and B.Q. Tang “Global regularity and convergence to equilibrium of reaction-diffusion systems with nonlinear diffusion”, Journal of Evolution Equations, doi=10.1007/s00028-019-00543-3, (2019), p. 1-47.
- K. Fellner, E. Latos and T. Suzuki, “Large-time asymptotics of a public goods game model with diffusion”, Monatshefte für Mathematik, doi: 10.1007/s00605-019-01275-9, (2019), p. 101-121.
- S. Bian, L. Chen, and E. Latos, “Nonlocal nonlinear reaction preventing blow-up in supercritical case of chemotaxis system“, Nonlinear Analysis, vol. 176, (2018), p. 178 - 191.
- 1S. Bian, L. Chen, and E. Latos, “Chemotaxis model with nonlocal nonlinear reaction in the whole space“, Discrete & Continuous Dynamical Systems-A, 38(10), (2018), p. 5067-5083.
- E. Latos, Y. Morita, and T. Suzuki, “Stability and Spectral Comparison of a Reaction–Diffusion System with Mass Conservation”, Journal of Dynamics and Differential Equations, Vol. 30 2 (2018) p. 823-844.
- K. Fellner, E. Latos, and B.Q. Tang “Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling”, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, Vol. 35, 3, (2018), p. 643-673.
- J. Li, E. Latos, and L. Chen, “Wavefronts for a nonlinear nonlocal bistable reaction-diffusion equation in population dynamics”, Journal of Differential Equations, Vol. 263, 10, (2017), p. 6427-6455.
- S. Bian, L. Chen, and E. Latos, “Global existence and asymptotic behavior of solutions to a nonlocal Fisher–KPP type problem”, Nonlinear Analysis, vol. 149, (2017), p. 165–176.
- E. Latos and T. Suzuki, “Chemotaxis with quadratic dissipation and logistic source”, Advances in Mathematical Sciences and Applications, vol. 25, (2016), no.1, p. 207-227.
- K. Fellner, E. Latos and T. Suzuki, “Global classical solutions for mass-conserving (super)-quadratic reaction-diffusion systems in three and higher space dimensions”, Discrete and Continuous Dynamical Systems - Series B, Vol. 21, 10, pp. 3441–3462, December 2016.
- K. Fellner, E. Latos, and G. Pisante, “On the finite time blow-up for filtration problems with nonlinear reaction”, Applied Mathematics Letters, (42), (2015), p47–52.
- E. Latos, T. Suzuki, “Global dynamics of a reaction-diffusion system with mass conservation”, J. Math. Anal. Appl., 411, (2014), p.107–118.
- E. Latos, D. Tzanetis “Existence and blow-up of solutions for a semilinear filtration problem”, Electron. J. Diff. Equ., (2013), No. 178, p.1-20.
- E. Latos, T. Suzuki, and Y. Yamada, “Transient and asymptotic dynamics of a prey-predator system with diffusion”, Math. Meth. Appl. Sci., 35, (2012), p.1101-1109.
- E. Latos, D. Tzanetis, “Grow-up of critical solutions for a non-local porous medium problem with Ohmic heating source”, Nonlinear Differential Equations and Applications NoDEA, (2010), 17: 137.
- E. Latos, D. Tzanetis, “Existence and blow-up of solutions for a non-local filtration and porous medium problem” Proceedings of the Edinburgh Mathematical Society, (2010) 53, p. 195–209.

▪ Mathematical Analysis of Blow-up of Solutions to local & non-local Partial Differential Problems, Ph.D. 2010.

▪ Asymptotic Behavior of the heat equation with critical potential, Postgraduate degree (M.Sc.) in Pure Mathematics.