Evangelos Latos

Institute of Mathematics and Scientific Computing, University of Graz

  • E. Latos and T. Suzuki, “On the Poisson–Nernst–Planck model".
  • E. Latos, “Nonlocal reaction preventing blow-up in the supercritical case of chemotaxis”, arXiv.
  • N. Kavallaris, E. Latos and T. Suzuki,, “Diffusion-driven blow-up for a non-local Fisher-KPP type model”, arXiv.

  1. E. Latos and T. Suzuki, “Quasilinear reaction diffusion systems with mass dissipation”, AIMS, Mathematics in Engineering, Special issue:"Advances in the analysis of chemotaxis systems" (2022), 4(5) 1-13.
  2. E. Latos and T. Suzuki, “Mass conservative reaction diffusion systems describing cell polarity”, Math Meth Appl Sci., (2021), 1-15.
  3. Li Chen, Laurent Desvillettes, and E. Latos, “On a Class of Reaction-Diffusion Equations with Aggregation”, Advanced Nonlinear Studies, De Gruyter, vol. 21, no. 1, 2021, 119-133.
  4. K. Fellner E. Latos and B.Q. Tang “Global regularity and convergence to equilibrium of reaction-diffusion systems with nonlinear diffusion”, Journal of Evolution Equations, doi=10.1007/s00028-019-00543-3, (2019), p. 1-47.
  5. K. Fellner, E. Latos and T. Suzuki, “Large-time asymptotics of a public goods game model with diffusion”, Monatshefte für Mathematik, doi: 10.1007/s00605-019-01275-9, (2019), p. 101-121.
  6. S. Bian, L. Chen, and E. Latos, “Nonlocal nonlinear reaction preventing blow-up in supercritical case of chemotaxis system“, Nonlinear Analysis, vol. 176, (2018), p. 178 - 191.
  7. 1S. Bian, L. Chen, and E. Latos, “Chemotaxis model with nonlocal nonlinear reaction in the whole space“, Discrete & Continuous Dynamical Systems-A, 38(10), (2018), p. 5067-5083.
  8. E. Latos, Y. Morita, and T. Suzuki, “Stability and Spectral Comparison of a Reaction–Diffusion System with Mass Conservation”, Journal of Dynamics and Differential Equations, Vol. 30 2 (2018) p. 823-844.
  9. K. Fellner, E. Latos, and B.Q. Tang “Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling”, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, Vol. 35, 3, (2018), p. 643-673.
  10. J. Li, E. Latos, and L. Chen, “Wavefronts for a nonlinear nonlocal bistable reaction-diffusion equation in population dynamics”, Journal of Differential Equations, Vol. 263, 10, (2017), p. 6427-6455.
  11. S. Bian, L. Chen, and E. Latos, “Global existence and asymptotic behavior of solutions to a nonlocal Fisher–KPP type problem”, Nonlinear Analysis, vol. 149, (2017), p. 165–176.
  12. E. Latos and T. Suzuki, “Chemotaxis with quadratic dissipation and logistic source”, Advances in Mathematical Sciences and Applications, vol. 25, (2016), no.1, p. 207-227.
  13. K. Fellner, E. Latos and T. Suzuki, “Global classical solutions for mass-conserving (super)-quadratic reaction-diffusion systems in three and higher space dimensions”, Discrete and Continuous Dynamical Systems - Series B, Vol. 21, 10, pp. 3441–3462, December 2016.
  14. K. Fellner, E. Latos, and G. Pisante, “On the finite time blow-up for filtration problems with nonlinear reaction”, Applied Mathematics Letters, (42), (2015), p47–52.
  15. E. Latos, T. Suzuki, “Global dynamics of a reaction-diffusion system with mass conservation”, J. Math. Anal. Appl., 411, (2014), p.107–118.
  16. E. Latos, D. Tzanetis “Existence and blow-up of solutions for a semilinear filtration problem”, Electron. J. Diff. Equ., (2013), No. 178, p.1-20.
  17. E. Latos, T. Suzuki, and Y. Yamada, “Transient and asymptotic dynamics of a prey-predator system with diffusion”, Math. Meth. Appl. Sci., 35, (2012), p.1101-1109.
  18. E. Latos, D. Tzanetis, “Grow-up of critical solutions for a non-local porous medium problem with Ohmic heating source”, Nonlinear Differential Equations and Applications NoDEA, (2010), 17: 137.
  19. E. Latos, D. Tzanetis, “Existence and blow-up of solutions for a non-local filtration and porous medium problem” Proceedings of the Edinburgh Mathematical Society, (2010) 53, p. 195–209.

Mathematical Analysis of Blow-up of Solutions to local & non-local Partial Differential Problems, Ph.D. 2010.
Asymptotic Behavior of the heat equation with critical potential, Postgraduate degree (M.Sc.) in Pure Mathematics.